Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042488

RESUMO

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Assuntos
Elastase de Leucócito , Transcortina , Glicosilação , Hidrocortisona/metabolismo , Elastase de Leucócito/metabolismo , Polissacarídeos , Proteólise , Transcortina/genética , Transcortina/química , Transcortina/metabolismo , Humanos
2.
Proc Natl Acad Sci U S A ; 120(36): e2303867120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639587

RESUMO

Neutrophils store microbicidal glycoproteins in cytosolic granules to fight intruding pathogens, but their granule distribution and formation mechanism(s) during granulopoiesis remain unmapped. Herein, we comprehensively profile the neutrophil N-glycoproteome with spatiotemporal resolution by analyzing four key types of intracellular organelles isolated from blood-derived neutrophils and during their maturation from bone marrow-derived progenitors using a glycomics-guided glycoproteomics approach. Interestingly, the organelles of resting neutrophils exhibited distinctive glycophenotypes including, most strikingly, highly truncated N-glycans low in α2,6-sialylation and Lewis fucosylation decorating a diverse set of microbicidal proteins (e.g., myeloperoxidase, azurocidin, neutrophil elastase) in the azurophilic granules. Excitingly, proteomics and transcriptomics data from discrete myeloid progenitor stages revealed that profound glycoproteome remodeling underpins the promyelocytic-to-metamyelocyte transition and that the glycophenotypic differences are driven primarily by dynamic changes in protein expression and less by changes within the glycosylation machinery. Notable exceptions were the oligosaccharyltransferase subunits responsible for initiation of N-glycoprotein biosynthesis that were strongly expressed in early myeloid progenitors correlating with relatively high levels of glycosylation of the microbicidal proteins in the azurophilic granules. Our study provides spatiotemporal insights into the complex neutrophil N-glycoproteome featuring intriguing organelle-specific N-glycosylation patterns formed by dynamic glycoproteome remodeling during the early maturation stages of the myeloid progenitors.


Assuntos
Neutrófilos , Proteoma , Glicosilação , Cognição , Grânulos Citoplasmáticos
3.
Methods Mol Biol ; 2628: 235-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781790

RESUMO

Mass spectrometry-driven glycomics and glycoproteomics, the system-wide profiling of detached glycans and intact glycopeptides from biological samples, respectively, are powerful approaches to interrogate the heterogenous glycoproteome. Efforts to develop integrated workflows employing both glycomics and glycoproteomics have been invested since the concerted application of these complementary approaches enables a deeper exploration of the glycoproteome. This protocol paper outlines, step-by-step, an integrated -omics technology, the "glycomics-assisted glycoproteomics" method, that first establishes the N-glycan fine structures and their quantitative distribution pattern of protein extracts via porous graphitized carbon-LC-MS/MS. The N-glycome information is then used to augment and guide the challenging reversed-phase LC-MS/MS-based profiling of intact N-glycopeptides from the same protein samples. Experimental details and considerations relating to the sample preparation and the N-glycomics and N-glycoproteomics data collection, analysis, and integration are discussed. Benefits of the glycomics-assisted glycoproteomics method, which can be readily applied to both simple and complex biological specimens such as protein extracts from cells, tissues, and bodily fluids (e.g., serum), include quantitative information of the protein carriers and site(s) of glycosylation, site occupancy, and the site-specific glycan structures directly from biological samples. The glycomics-assisted glycoproteomics method therefore facilitates a comprehensive view of the complexity and dynamics of the heterogenous glycoproteome.


Assuntos
Glicômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Glicômica/métodos , Espectrometria de Massas em Tandem/métodos , Glicopeptídeos/química , Proteoma , Polissacarídeos/química
4.
Glycobiology ; 32(3): 218-229, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939086

RESUMO

We recently discovered that human neutrophils express immunomodulatory glycoproteins carrying unusual and highly truncated paucimannosidic N-glycans (Man1-3GlcNAc2Fuc0-1), but their biosynthesis remains elusive. Guided by the well-characterized truncation pathway in invertebrates and plants in which the N-acetyl-ß-D-hexosaminidase (Hex) isoenzymes catalyze paucimannosidic protein (PMP) formation, we here set out to test if the homologous human Hex α and ß subunits encoded by HEXA and HEXB drive a similar truncation pathway in human neutrophils. To this end, we performed quantitative glycomics and glycoproteomics of several CRISPR-Cas9-edited Hex-disrupted neutrophil-like HL-60 mutants (HEXA-KO and HEXB-KO) and matching unedited cell lines. Hex disruption was validated using next-generation sequencing, enzyme-linked immunosorbent assay (ELISA), quantitative proteomics and Hex activity assays. Excitingly, all Hex-disrupted mutants displayed significantly reduced levels of paucimannosylation, particularly Man2-3GlcNAc2Fuc1, relative to unedited HL-60 suggesting that both HEXA and HEXB contribute to PMP formation via a hitherto unexplored truncation pathway in neutrophils. Quantitative N-glycomics indeed demonstrated reduced utilization of a putative noncanonical truncation pathway in favor of the canonical elongation pathway in all Hex-disrupted mutants relative to unedited controls. Quantitative glycoproteomics recapitulated the truncation-to-elongation switch in all Hex-disrupted mutants and showed a greater switch for N-glycoproteins cotrafficking with Hex to the azurophilic granules of neutrophils such as myeloperoxidase. Finally, we supported the Hex-PMP relationship by documenting that primary neutrophils isolated from an early-onset Sandhoff disease patient (HEXB-/-) displayed dramatically reduced paucimannosylation relative to neutrophils from an age-matched unaffected donor. We conclude that both human Hex α and ß mediate PMP formation via a putative noncanonical truncation pathway in neutrophils.


Assuntos
Hexosaminidases , Neutrófilos , Hexosaminidase A , Hexosaminidase B , Humanos , beta-N-Acetil-Hexosaminidases/genética
5.
Oncotarget ; 12(21): 2188-2205, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676051

RESUMO

Aberrant protein glycosylation is a prominent cancer feature. While many tumour-associated glycoepitopes have been reported, advances in glycoanalytics continue to uncover new associations between glycosylation and cancer. Guided by a comprehensive literature survey suggesting that oligomannosylation (Man5-9 GlcNAc2) is a widespread and often regulated glycosignature in human cancers, we here revisit a valuable compilation of nearly 500 porous graphitized carbon LC-MS/MS N-glycomics datasets acquired across 11 human cancer types to systematically test for oligomannose-cancer associations. Firstly, the quantitative glycomics data obtained across 34 cancerous cell lines demonstrated that oligomannosylation is a pan-cancer feature spanning in a wide abundance range. In keeping with literature, our quantitative glycomics data of tumour and matching control tissues and new MALDI-MS imaging data of tissue microarrays showed a strong cancer-associated elevation of oligomannosylation in both basal cell (p = 1.78 × 10-12) and squamous cell (p = 1.23 × 10-11) skin cancer and colorectal cancer (p = 8.0 × 10-4). The glycomics data also indicated that some cancer types including gastric and liver cancer exhibit unchanged or reduced oligomannose levels, observations also supported by literature and MALDI-MS imaging data. Finally, expression data from public cancer repositories indicated that several α1,2-mannosidases are regulated in tumour tissues suggesting that these glycan-processing enzymes may contribute to the cancer-associated modulation of oligomannosylation. This omics-centric study has compiled robust glycomics and enzyme expression data revealing interesting molecular trends that open avenues to better understand the role of oligomannosylation in human cancers.

6.
J Biol Chem ; 296: 100144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273015

RESUMO

Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.


Assuntos
Grânulos Citoplasmáticos/enzimologia , Glicopeptídeos/metabolismo , Neutrófilos/enzimologia , Peroxidase/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicopeptídeos/química , Glicosilação , Humanos
7.
Mol Aspects Med ; 79: 100882, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32847678

RESUMO

The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.


Assuntos
Imunidade Inata , Neutrófilos , Glicoproteínas/metabolismo , Glicosilação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...